Skip Navigation
Skip to contents

Res Vestib Sci : Research in Vestibular Science

OPEN ACCESS
SEARCH
Search

Search

Page Path
HOME > Search
3 "Medial vestibular nucleus"
Filter
Filter
Article category
Keywords
Publication year
Authors
Original Articles
Application of Tetrode Technology for Analysis of Changes in Neural Excitability of Medial Vestibular Nucleus by Acute Arterial Hypotension
Young Kim, Ho Koo, Byung Rim Park, Se Jin Moon, Seung-Bum Yang, Min Sun Kim
Res Vestib Sci. 2018;17(4):142-151.   Published online December 21, 2018
DOI: https://doi.org/10.21790/rvs.2018.17.4.142
  • 5,737 View
  • 53 Download
AbstractAbstract PDF
Objectives
Excitability o medial vestibular nucleus (MVN) in the brainstem can be affected by changes in the arterial blood pressure. Several animal studies have demonstrated that acute hypotension results in the alteration of multiunit activities and expression of cFos protein in the MVN. In the field of extracellular electrophysiological recording, tetrode technology and spike sorting algorithms can easily identify single unit activity from multiunit activities in the brain. However, detailed properties of electrophysiological changes in single unit of the MVN during acute hypotension have been unknown.
Methods
Therefore, we applied tetrode techniques and electrophysiological characterization methods to know the effect of acute hypotension on single unit activities of the MVN of rats.
Results
Twoor3typesofunitcouldbeclassifiedaccordingtothemorphologyofspikes and firing properties of neurons. Acute hypotension elicited 4 types of changes in spontaneous firing of single unit in the MVN. Most of these neurons showed excitatory responses for about within 1 minute after the induction of acute hypotension and then returned to the baseline activity 10 minutes after the injection of sodium nitroprusside. There was also gradual increase in spontaneous firing in some units. In contrast small proportion of units showed rapid reduction of firing rate just after acute hypotension. Conclusions: Therefore, application of tetrode technology and spike sorting algorithms is another method for the monitoring of electrical activity of vestibular nuclear during acute hypotension.
Expression of Metabotropic Glutamate Receptors in the Medial Vestibular Nucleus Following Acute Hypotension in Rats
Myoung Ae Choi, Nari Kim, Sang Eon Park, Byung Geon Park, Min Sun Kim, Byung Rim Park
Res Vestib Sci. 2012;11(4):131-137.
  • 1,900 View
  • 10 Download
AbstractAbstract
Background and Objectives: Acute hypotension induces expression of c-Fos protein and phosphorylated extracellular signal-regulated kinase (pERK), and glutamate release in the vestibular nuclei. Expression of c-Fos protein and pERK is mediated by the excitatory neurotransmitter, glutamate. In this study, the signaling pathway of glutamate in the vestibular nuclei following acute hypotension was investigated. Materials and Methods: Expression of metabotropic glutamate receptors (mGluRs) was measured by Western blotting in the medial vestibular nucleus following acute hypotension in rats. Results: Expression of pGluR1 Ser831, a subtype of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, peaked at 30 minutes after acute hypotension insult, and expression of pNR2B, a subtype of N-methyl-D-aspartate (NMDA) receptors, peaked at 2 hours after acute hypotension insult. Acute hypotension induced expression of Homer1a and group I mGluR in the medial vestibular nucleus. Expression of mGluR1 and mGluR5 peaked at 6 hours following acute hypotension insults. Conclusion: These results suggest that afferent signals from the peripheral vestibular receptors, resulting from acute hypotension insult, are transmitted through group I mGluRs as well as AMPA and NMDA receptors in the vestibular system.
Spatio-temporal Changes on c-Fos Protein Expression in the Brain Stem Nuclei following Arsanilate-induced Unilateral Labyrinthectomy in Rats
Jae Hyo Kim, Chang Ig Choi, Moon Young Lee, Min Sun Kim, Byung Soo Soh, Eun Ho Park, Byung Rim Park
J Korean Bal Soc. 2003;2(1):86-94.
  • 1,600 View
  • 8 Download
AbstractAbstract PDF
Spatio-temporal changes on c-Fos protein expression were investigated in vestibular compensation following unilateral labyrinthectomy (UL) induced by injection of arsanilate into the middle ear cavity, chemical labyrinthectomy, or surgical labyrinthectomy in medial vestibular nuclei (MVN), prepositus hypoglossal nuclei (PrH), and inferior olivary nuclei (ION) of Sprague-Dawley rats. Number of spontaneous nystagmus in surgical labyrinthectomy group was 28.2±1.2 beats/10 sec at post-op 2 hs and the nystagmus disappeared 76 hs after UL. In chemical labyrinthectomy group, spontaneous nystagmus occurred 6 hs after UL and increased up to maximum at 12 hs and disappeared 96 hs. Head deviation in surgical labyrinthectomy group reached a peak at post-op 2 hs and recovered to control level at 144 hs, but chemical labyrinthectomy produced head deviation 24 hs after UL and increased degree of the deviation over time till 144 hs. Expression of c-Fos protein in surgical labyrinthectomy group at post-op 2 hs was 81±19.4 cells in ipsilateral MVN to the lesion side and 212±60 cells in contralateral MVN, which showed severe asymmetry between bilateral MVN, and decrease of c-Fos protein expression was more in contralateral MVN than in ipsilateral MVN at 6 hs. Chemical labyrinthectomy expressed more c-Fos protein in contralateral MVN 6 hs after UL and in ipsilateral MVN 12 hs after UL, which showed asymmetry of c-Fos protein expression between bilateral MVN. And the expression in ipsilateral MVN of chemical labyrinthectomy group was increased gradually 48 hs after UL and reached a peak at 72 hs. In chemical labyrinthectomy group, expression of c-Fos protein in PrH was increased more in ipsilateral than in contralateral 6 hs after UL and more in contralateral 12 hs after UL, and ION showed more expression of c-Fos protein in contralateral than in ipsilateral 6 hs after UL through 72 hs. These results suggest that the course of vestibular compensation and the temporal expression of c-Fos protein in the brain stem nuclei following UL differed between surgical and chemical labyrinthectomy.

Res Vestib Sci : Research in Vestibular Science